THE EFFECT OF IMPERFECTIONS ON
THE VERTICAL BUCKLING OF RAILROAD TRACKS

Yehia M. El-Aini

JUNE 1976
INTERIM REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22161

Prepared for
U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL RAILROAD ADMINISTRATION
Office of Research and Development
Washington DC 20590
NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.
THE EFFECT OF IMPERFECTIONS ON THE VERTICAL BUCKLING OF RAILROAD TRACKS

Yehia M. El-Aini

Princeton University
School of Engineering and Applied Science
Princeton NJ 08540

U.S. Department of Transportation
Federal Railroad Administration
Office of Research and Development
Washington DC 20590

*Under contract to: Transportation Systems Center
Kendall Square
Cambridge MA 02142

This report deals with an analytic prediction of the effect of geometric imperfections on the post-buckling characteristics of railroad tracks. The analysis is restricted to the case of vertical track buckling due to constrained thermal expansion in which the track is assumed to lift itself up over a finite span. The imperfections are categorized into two cases: Case (A) in which the region of imperfection is larger than the span of lift-off and Case (B) in which the imperfection region is smaller than the span of lift-off. It is shown that while a perfectly straight track does not exhibit bifurcation points from the undeformed state, the imperfect track does and that the bifurcation temperature in Case (A) is lower than in Case (B) for the same ratio of imperfection amplitudes reduces the bifurcation temperatures significantly. It is found that the bifurcation temperature as well as the safe temperature increase are higher for heavier tracks.
PREFACE

This report has been prepared by Princeton University as part of the Improved Track Structure Research Program managed by the Transportation Systems Center (TSC). This program was sponsored by the Office of Research and Development, Improved Track Structure Research Division, of the Federal Railroad Administration, Washington DC 20590.

The report presents the results of a study dealing with analytically predicting the effect of geometric imperfections on the buckling of railroad track in the vertical plane, when subjected to uniform thermal expansions.

Dr. Andrew Kish, at the Transportation Systems Center, Cambridge, Mass. was the technical monitor for the work under this contract, and his cooperation and suggestions are gratefully acknowledged. The guidance and useful comments provided by Professor Arnold D. Kerr of Princeton University during the course of this investigation are deeply appreciated.
### Metric Conversion Factors

#### Approximate Conversions to Metric Measures

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>inches</td>
<td>2.5</td>
<td>centimeters</td>
<td>cm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>30</td>
<td>centimeters</td>
<td>cm</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.9</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.6</td>
<td>kilometers</td>
<td>km</td>
</tr>
</tbody>
</table>

#### Area

<table>
<thead>
<tr>
<th>sq in.</th>
<th>square inches</th>
<th>0.000694</th>
<th>square centimeters</th>
<th>cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>sq ft.</td>
<td>square feet</td>
<td>0.09293</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>sq yd.</td>
<td>square yards</td>
<td>0.83613</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>acres</td>
<td></td>
<td>0.40468</td>
<td>hectares</td>
<td>ha</td>
</tr>
</tbody>
</table>

#### Mass (weight)

| oz     | ounces        | 0.06807   | grams             | g    |
| lb     | pounds        | 453.592   | kilograms         | kg   |
| short tons | (2000 lb) | 907.185   | metric tons       | t    |

#### Volume

| tsp    | tablespoons   | 5.69871   | milliliters       | ml   |
| cpe    | fluid ounces  | 30.957   | milliliters       | ml   |
| c      | cups          | 0.2371    | liters            | l    |
| pt     | pints         | 0.4731    | liters            | l    |
| qt     | quarts        | 0.9506    | liters            | l    |
| gal    | gallons       | 3.7854    | liters            | l    |
| ft³    | cubic feet    | 0.0284    | cubic meters      | m³   |
| yd³    | cubic yards   | 0.7646    | cubic meters      | m³   |

#### Temperature (exact)

- Fahrenheit temperature = 9/5 (Celsius temperature) + 32
- Celsius temperature = (Fahrenheit temperature - 32) * 5/9

### Approximate Conversions from Metric Measures

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>millimeters</td>
<td>0.04</td>
<td>inches</td>
<td>in</td>
</tr>
<tr>
<td>cm</td>
<td>centimeters</td>
<td>0.3744</td>
<td>inches</td>
<td>in</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>3.2808</td>
<td>feet</td>
<td>ft</td>
</tr>
<tr>
<td>km</td>
<td>kilometer</td>
<td>1.0936</td>
<td>miles</td>
<td>mi</td>
</tr>
</tbody>
</table>

#### Area

| cm²   | square centimeters | 0.0001       | square inches | in² |
| m²    | square meters      | 1.1965      | square yards  | yd² |
| m²    | square meters      | 1.2983      | square yards  | yd² |
| m²    | hectares (10,000 m²) | 2.4711      | acres         | ac   |

#### Mass (weight)

| gr     | grams          | 0.03527     | ounces        | oz   |
| g      | kilograms      | 0.0002205   | pounds        | lb   |
| t      | tonnes (1000 kg) | 2204.62     | short tons    | t    |

#### Volume

| l      | liters         | 1.0567      | fluid ounces  | fl oz |
| l      | liters         | 0.2642      | gallons        | gal   |
| l      | liters         | 0.061023    | cubic feet     | ft³   |
| l      | liters         | 0.0035315   | cubic yards    | yd³   |

#### Temperature (exact)

- Celsius temperature = (Fahrenheit temperature - 32) * 5/9
- Fahrenheit temperature = 9/5 (Celsius temperature) + 32
## CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. FORMULATION OF THE PROBLEM</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Case (A): The Imperfection Region is Larger than the Span of Lift-Off</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Analytical Solution of Case (A)</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Case (B): The Imperfection Region is Smaller than the Lift-Off Region</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Analytical Solution of Case (B)</td>
<td>23</td>
</tr>
<tr>
<td>3. DISCUSSION OF RESULTS</td>
<td>30</td>
</tr>
<tr>
<td>4. CONCLUSIONS</td>
<td>32</td>
</tr>
<tr>
<td>5. REFERENCES</td>
<td>33</td>
</tr>
<tr>
<td>APPENDIX: Report of Inventions</td>
<td>34</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Buckled Configurations in Cases (A) and (B)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Mathematical Model for Case (A)</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Temperature Increase vs. Maximum Deflection for Case (A) (Light Track)</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>Axial Load in Buckled Region vs. Maximum Deflection for Case (A) (Light Track)</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Temperature Increase vs. Maximum Deflection for Case (A) (Heavy Track)</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Axial Load in Buckled Region vs. Maximum Deflection for Case (A) (Heavy Track)</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Mathematical Model for Case (B)</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>Temperature Increase vs. Maximum Deflection for Case (B) (Light Track)</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Axial Load in Buckled Region vs. Maximum Deflection for Case (B) (Light Track)</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>Safe-Temperature Increase vs. Half-Span of Imperfection for a Light Track</td>
<td>31</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

In a recent survey of the literature on vertical track buckling, A. D. Kerr [1]* discussed the various aspects of the problem indicating that the use of linearized analyses may lead to incorrect results. Then it was shown by Kerr and El-Aini in [2] and by El-Aini in [3] that for the problem of vertical track buckling, due to constrained thermal expansion, the response of a quasilinear formulation is very close to that of a formulation with higher nonlinearities.

In both references [2] and [3], the track was assumed to be perfectly straight. The fact that an actual track may encounter different types of geometric imperfections makes it necessary to examine the effect of these imperfections on the post-buckling response of the track structure.

In 1973, Kerr [4] showed on a model, which exhibits the characteristic features of a track in the vertical plan, that the presence of initial imperfections reduces the range of safe-temperature increase.

In view of the above findings and because of the potential importance of the obtained results in railroad mechanics, it seemed necessary to solve the problem of vertical track buckling with geometric imperfections, which is the subject of this report.

For mathematical convenience, geometric imperfections may be classified into two main categories: (A) the imperfection region is larger than the span of lift-off and (B) the imperfection region is smaller than the lift-off span, as shown in Figure 1.

In the following analysis, the problem is formulated using a variational approach to ensure mathematically consistent differential equations, boundary conditions and matching conditions [5].

*Numbers in brackets denote references
FIGURE 1. BUCKLED CONFIGURATIONS IN CASES (A) AND (B)
The results are presented for "light" and "heavy" tracks. The first corresponds to a track with wood cross ties and 57 kg/m rails (115 lb/yard) and the second corresponds to a track with concrete cross ties and 68 kg/m rails (136 lb/yard).
2. FORMULATION OF THE PROBLEM

In the following analysis, the track will be idealized by an equivalent infinite beam of uniform cross section resting on a rigid foundation. The following additional assumptions are made:

1) The beam is subject to a uniform-temperature increase of magnitude T. This increase is measured from the neutral laying temperature of the track. In addition a uniformly distributed weight of intensity q is assumed to be acting along the reference axis of the beam.

2) The beam is assumed to undergo deformations in the x-z plane only, which are symmetric with respect to the origin (x = 0).

3) The deformed configuration is assumed to consist of two regions: a lift-off region, \(-a \leq x \leq a\), and an attached outer region.

4) The foundation resistance, to the axial displacements of the beam elements, is represented by a series of linear springs with stiffness coefficient \(k_h\) (Winkler model), acting at the center line of the beam and throughout the attached region [2].

5) The initial imperfect state is stressless.

6) The beam is made of homogeneous, isotropic and linearly elastic material with modulus of elasticity \(E\).

With the above assumptions, two types of geometric imperfections will be discussed in the following section.

2.1 CASE (A): THE IMPERFECTION REGION IS LARGER THAN THE SPAN OF LIFT-OFF

In this case, the initial imperfect shape is assumed to be of the form

\[
W_0(x) = \begin{cases} 
\frac{F}{2} \left[ 1 + \cos \frac{\pi x}{\ell} \right]; & -\ell \leq x \leq \ell \quad ; \quad \ell > a \\
0 & \text{elsewhere}
\end{cases}
\]

-4-
and
\[ u_0(x) = 0 \quad ; \quad -\infty \leq x \leq \infty \]

The deformed equilibrium configuration for this case is schematically presented in Figure 2.

Assuming the validity of the plane section hypothesis and using the theory of Ref. [6], it follows that

\[ \varepsilon_{xx} = (\hat{u}, x + \frac{1}{2} \hat{q}^2, x - z^*, xx)^{-\alpha T} \]

where \(( )_{, x} = d( )/dx\) and \(\alpha\) is the coefficient of thermal expansion. The \((^*)\) terms refers to the deformations of the reference \(x\)-axis.

Denoting the lift-off region by (1) and the attached region by (2), it follows that

\[ u_1^* = \hat{u}_1 + u_0 \quad ; \quad u_2^* = \hat{u}_2 + u_0 \]
\[ w_1^* = \hat{w}_1 + w_0 \quad ; \quad w_2^* = \hat{w}_2 + w_0 \]

where the star denotes the total deflections.

Substituting (3) into (2) it follows that

\[ \varepsilon_{i, xx}^* = \varepsilon_{0, xx} + \varepsilon_{i, xx} \quad ; \quad i = 1, 2 \]

where

\[ \varepsilon_{0, xx} = (u_0, x + \frac{1}{2} w_0, x^2) - z w_0, xx \]
FIGURE 2. MATHEMATICAL MODEL FOR CASE (A)
and
\[ \hat{\varepsilon}_{i,xx} = (\hat{\varepsilon}_{i,xx} - z \hat{\omega}_{1,xx}) - aT \]  

6)  

and
\[ \hat{\varepsilon}_{i,xx} = \hat{u}_{1,x} + \frac{1}{2} \hat{w}_{1,x}^2 + \hat{\omega}_{1,x} \hat{w}_{0,x} \]  

7)  

Since the initial state is stress free, Hooke's law may be written as
\[ \sigma_{i,xx} = E \hat{\varepsilon}_{i,xx} \]  

8)  

Utilizing the principle of stationary total potential energy, the differential equations of equilibrium together with the boundary conditions are derived from the condition
\[ \delta \Pi = 0 \]  

9)  

where
\[ \Pi = (U - W) \]  

10)  

and

\[ U = \text{the elastic strain energy of the system} \]  

and

\[ W = \text{the work potential of the surface and body forces}. \]  

Because of the assumed symmetry of deformations, \( U \) and \( W \) may be written as:

\[ U = 2 \int_0^a \left( \int_a^\infty \frac{1}{2} E \hat{\varepsilon}_{1,xx}^2 \, dA \, dx + 2 \int_a^\infty \left( \int_a^\infty \frac{1}{2} E \hat{\varepsilon}_{2,xx}^2 \, dA \right) \, dx + 2 \int_a^\infty \frac{1}{2} k_h \hat{u}_2^2 \, dx \right) \]  

11)  

\[ W = 2 \int_0^a \hat{q} \, w_1 \, dx + 2 \int_a^\infty \hat{q} \, w_2 \, dx \]  

-7-
Because of the constraint that \( \hat{w}_2 \) together with all its higher derivatives have to be identically zero, a number of Lagrange multipliers have to be used to insure a mathematically consistent formulation.

Let

\[
\Pi^* = \Pi + 2 \int_a^\infty \lambda_1 \hat{w}_2 \, dx + 2\lambda_2 \hat{w}_2(a) + 2\lambda_3 \hat{w}_2'(a),
\]

where \( \lambda_1, \lambda_2 \) and \( \lambda_3 \) are Lagrange multipliers. Now the D.E.'s* and B.C.'s* are obtained from

\[
\delta \Pi^* = 0
\]

Performing the integration over the area, it follows that

\[
\Pi^* = \int_0^a F_1 \, dx + \int_a^\infty F_2 \, dx + 2\lambda_2 \hat{w}_2(a) + 2\lambda_3 \hat{w}_2'(a),
\]

where

\[
F_1 = EA(\hat{\epsilon}_{1xx} - \sigma T)^2 + EI \hat{w}_2'_{1xx} - 2q \hat{w}_4
\]

\[
F_2 = EA(\hat{\epsilon}_{2xx} - \sigma T)^2 + EI \hat{w}_2'_{2xx} + k u_2^2 - 2q \hat{w}_2 + 2\lambda_1 \hat{w}_2
\]

Noting that \( a \) is a variable end point, the first variation of \( \Pi^* \), following [7], is

\[
\delta \Pi^* = \delta \int_0^a F_1 \, dx + \delta \int_a^\infty F_2 \, dx \bigg|_{x=a} \delta \hat{a} + 2\lambda_2 \delta \hat{w}_2 \bigg|_{x=a} + 2\lambda_3 \delta \hat{w}_2' \bigg|_{x=a}.
\]

*Denote differential equation and boundary conditions respectively.
Conducting the variations in (17), it follows that

\[
\frac{1}{2} \delta W = \int_0^a \left\{ \left[-(EAe_{1,x} \hat{u}_1 + \hat{k} u_2) \delta \hat{u}_1 + \left[(EI \hat{w}_{1,xx} \right)_{xx} - [EAe_1(w_0 + w_1, x)]_x = q \delta \hat{w}_1 \right] \right\} dx \\
+ \int_a^\infty \left\{ \left[-(EAe_1)_x + k \hat{u}_2 \right) \delta \hat{u}_2 + \left[(EI \hat{w}_{2,xx})_{xx} - [EAe_2(w_0 + w_2, x)]_x = q + \lambda_1 \right] \delta \hat{w}_2 \right\} dx \\
+ \left\{ \left[-(EAe_1) \hat{u}_1 - [EAe_1 \hat{w}_{1,x} - (EI \hat{w}_{1,xx}, x)] \delta \hat{w}_1 - [EI \hat{w}_{1,xx}] \delta \hat{w}_1, x = 0 \right\} \\
+ \left\{ \frac{1}{2} (F_1 - F_2) \delta a + [EAe_1 \hat{u}_1 - EAe_2 \hat{u}_2] + [EAe_1 \hat{w}_{1,x} - (EI \hat{w}_{1,xx})_x \delta \hat{w}_1 \right\} \\
- \left[ EAe_2 \hat{w}_{2,x} - (EI \hat{w}_{2,xx}), x - \lambda_2 \right] \delta \hat{w}_2 + (EI \hat{w}_{1,xx}) \delta \hat{w}_1, x \right\} \\
- \left[ EI \hat{w}_{2,xx} - \lambda_3 \right] \delta \hat{w}_2, x \right\} = 0, \quad 18)
\]

where

\[ \varepsilon_i = \dot{\varepsilon}_{ixx} - \alpha T, \quad i = 1, 2 \]

Since \( a \) is a variable endpoint, the variations of the functions \( \hat{u}_1, \hat{u}_2, \hat{w}_1, \hat{w}_2, \hat{w}_{1,x} \) and \( \hat{w}_{2,xx} \) at \( x = a \) are interrelated in the manner described in [2] and [3], as follows:

\[ \delta \eta_i(a) = \delta \eta - \eta_{i,x}(a) \delta a, \quad i = 1, 2 \]

and \( \eta_i(x) \) stands for any of the above-mentioned functions.

Applying the fundamental lemma of calculus of variations and noting the continuity of the beam at the separation point, the D. E.'s are:

\[ -9- \]
\[
\begin{align*}
\text{EI}\dot{w}_{1,xxx} - [EA(\hat{e}_{lxx} - \alpha T)(w_{0,x} + \hat{w}_{1,x})],_x = q \\
0 \leq x \leq a
\end{align*}
\]
\[
\begin{align*}
- [EA(\hat{e}_{lxx} - \alpha T)]_x = 0 \\
20.b
\end{align*}
\]
and
\[
\begin{align*}
\text{EI}\dot{w}_{2,xxxx} - [EA(\hat{e}_{2xx} - \alpha T)(w_{0,x} + \hat{w}_{2,x})],_x = (q - \lambda_1) \\
21.a
\end{align*}
\]
\[
\begin{align*}
- [EA(\hat{e}_{2xx} - \alpha T)] + k_n \hat{u}_2 = 0 \\
a \leq x \leq \infty \quad 21.b
\end{align*}
\]
\[
\begin{align*}
\hat{w}_2(x) = \hat{w}_{2,x}(x) = \hat{w}_{2,xx} = \cdots = 0 \quad 21.c
\end{align*}
\]
The boundary and transversality conditions reduce to:

at \(x = 0:\)
\[
\begin{align*}
\hat{u}_1(0) = 0 \\
\hat{w}_{1,x}(0) = 0 \\
\hat{w}_{1,xxx}(0) = 0
\end{align*}
\]
\[
22.a \quad 22.b \quad 22.c
\]

at \(x = a:\)
\[
\begin{align*}
\hat{w}_1(a) = \hat{w}_2(a) \\
\hat{w}_{1,x}(a) = \hat{w}_{2,x}(a) \\
\text{EI}\dot{w}_{1,xx}(a) = \text{EI}\dot{w}_{2,xx}(a) - \lambda_3
\end{align*}
\]
\[
22.d \quad 22.e \quad 22.f
\]
\[
\begin{align*}
-\text{EI}\dot{w}_{1,xxx}(a) = -\text{EI}\dot{w}_{2,xxx}(a) - \lambda_2 \\
\hat{u}_1(a) = \hat{u}_2(a) \\
\text{EAE}_{lxx}(a) = \text{EAE}_{2xx}(a)
\end{align*}
\]
\[
22.g \quad 22.h \quad 22.i
\]
and
\[
\begin{align*}
\text{TC}** \\
\hat{w}_{1,xx}(a) = \hat{w}_{2,xx}(a)
\end{align*}
\]
\[
22.j
\]

* For details and comments on the difficulties encountered with the discontinuities of the Winkler model, at the separation point, refer to [2].
** T. C. denotes transversality condition.
at \( x = \infty \).

\[
\begin{align*}
(k) & \quad \hat{u}_2(\infty) = 0 \tag{22.k} \\
(l) & \quad \hat{w}_2(\infty) = 0 \tag{22.l} \\
(m) & \quad \hat{w}_{2,xxx}(\infty) = 0 \tag{22.m}
\end{align*}
\]

From T. C. (22) (j) and B. C. (22) (f), it follows that

\[
\lambda_3 = 0 , \tag{23}
\]

which implies the continuity of bending moments at the separation point, while B. C. (22)(g) indicates a discontinuity of the shearing forces at \( x = a \). This is attributed to the neglect of the shear deformation in the strain energy expression.

2.2 ANALYTICAL SOLUTION OF CASE (A)

Integrating (20.b) once it follows that

\[
-EA(\hat{\varepsilon}_{1xx} - \sigma T) = \text{Const.} = N \tag{24.b}
\]

Substitution of (24) into D. E. (20.a), it becomes

\[
\hat{w}_{1,xxxx} + \kappa^2 \hat{w}_{1,xx} = q^* - \kappa^2 \hat{w}_{0,xx} \tag{25}
\]

where

\[
\kappa^2 = N/EI; \quad q^* = q/EI \tag{26}
\]

Utilizing the expression for \( \hat{w}_0(x) \) in (1), the general solution to D. E. (25) takes the form

\[
\hat{w}_1(x) = A_1 + A_2 x + A_3 \cos \kappa x + A_4 \sin \kappa x + \frac{q^*}{2\kappa^2} x - p \cos \left( \frac{2\pi}{L} x \right) , \tag{27}
\]
where $A_1, A_2, A_3$ and $A_4$ are constants and

$$p = \frac{\kappa^2 r}{2[(\pi/L)^2 - \kappa^2]}$$  \hspace{1cm} (28)$$

Because of symmetry around the origin, it follows that

$$A_2 \equiv A_4 \equiv 0$$  \hspace{1cm} (29)$$

and the general solution reduces to

$$\hat{w}_1(x) = A_1 + A_3 \cos x + \frac{q^*}{2\kappa^2} x^2 - \rho \cos \frac{\pi x}{L}$$  \hspace{1cm} (30)$$

Substitution of equations (30) and (21.c) into B.C.'s (22)(d) and (22)(e), it follows that

$$A_3 = \frac{[q^* a + \frac{\rho \pi}{L} \sin (\frac{\pi a}{L})]}{\kappa \sin \kappa a}$$  \hspace{1cm} (31)$$

and

$$A_1 = -A_3 \cos \kappa a - \frac{q^* a^2}{2\kappa^2} + \rho \cos (\frac{\pi a}{L})$$  \hspace{1cm} (32)$$

Substitution of (31) and (32) into (30), it follows that

$$\hat{w}_1(x) = \left[ \frac{q^* a}{\kappa^2} + \frac{\rho \pi}{L} \frac{\sin (\frac{\pi a}{L})}{\kappa \sin \kappa a} \right] (\cos \kappa x - \cos \kappa a) +$$

$$\frac{q^*}{2\kappa^2} (x^2 - a^2) - \rho (\cos \frac{\pi x}{L} - \cos \frac{\pi a}{L}) ; 0 \leq x \leq a; \hspace{1cm} (\ell > a).$$  \hspace{1cm} (33)$$

The transversality condition (22)(j) gives an additional equation to determine the unknown $a$ for any given value of $\kappa$, namely:

$$- \left[ \frac{q^* a}{\kappa} + \kappa \frac{\rho \pi}{L} \frac{\sin (\frac{\pi a}{L})}{\tan \kappa a} \right] + \frac{q^*}{\kappa^2} + \rho (\frac{\pi}{L})^2 \cos \frac{\pi a}{L} = 0$$  \hspace{1cm} (34)$$

-12-
In the limit if \( f \to 0 \), (34) reduces to

\[
\tan \, \kappa a = \kappa a
\]

which is the transversality condition for the case without imperfection.

The solution for the axial displacement in the lift-off region is obtained as follows:

Equation (20.b) may be written as

\[
\hat{u}_1(x) = \left[ -\frac{N}{EA} + \alpha T + \frac{1}{2} \hat{w}_{1,x} - \hat{w}_{1,x} w_{0,x} \right]
\]

Integrating (36) once and noting B. C. (22)(a), it follows that

\[
\hat{u}_1(x) = \left( -\frac{N}{EA} + \alpha T \right) x - \int_0^x \left( \frac{1}{2} \hat{w}_{1,\xi} + \hat{w}_{1,\xi} w_{0,\xi} \right) d\xi
\]

Considering D. E. (21.b) and noting equations (8) and (21.c), it reduces to

\[
\hat{u}_2,xx - \beta^2 \hat{u}_2 = 0
\]

where

\[
\beta^2 = \left( \frac{k_n}{EA} \right)
\]

The general solution of D. E. (38) is

\[
\hat{u}_2(x) = C_1 e^{-\beta x} + C_2 e^{\beta x}
\]

Because of the regularity condition (22)(k) at \( - \), it follows that

\[
C_2 = 0
\]

hence,

\[
\hat{u}_2(x) = C_1 e^{-\beta x}
\]
B. C. (22)(i) reduces to
\[ \hat{u}_{1, x}(a) = \hat{u}_{2, x}(a) \]  \hspace{1cm} (42)

Substitution of (36) and (41) into (42) gives
\[ c_1 = \frac{e^{-\beta a}}{-\beta} \left[ -\frac{N}{EA} + aT \right] \]  \hspace{1cm} (43)

and the solution to \( \hat{u}_2(x) \) becomes
\[ \hat{u}_2(x) = \frac{e^{-\beta(x-a)}}{-\beta} \left[ -\frac{N}{EA} + aT \right] \]  \hspace{1cm} (44)

Now, substitution of (44) and (37) into B. C. (22)(h) gives
\[ T = \left\{ \left( \frac{N}{EA} \right) + \frac{1}{(1 + \frac{1}{\beta a})} \int_0^a \left( \frac{1}{2} \hat{\omega}'_{1, x} + \hat{\omega}_{1, x, x, x} \right) dx \right\} / a \]  \hspace{1cm} (45)

which is the temperature increase corresponding to a state of lift-off over a span 2a.

The process of evaluating the post-buckling response may be summarized as follows:

1) For a chosen value of the axial load \( N \), (34) is solved iteratively through a Newton-Raphson scheme to determine the corresponding value of \( a \).

2) Knowing \( N \) and \( a \), the solution for \( \hat{\omega}_1(x) \) is determined and the integrals in (45) can be evaluated in closed form.

3) The use of (45) gives the temperature increase corresponding to the equilibrium state \( \hat{\omega}_1(x) \).

Typical values of the track parameters are listed in Table 1. They correspond to a track with wood ties (light track) and a track with concrete ties (heavy track).
<table>
<thead>
<tr>
<th>Track</th>
<th>Light track</th>
<th>Heavy track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of rail, [b]</td>
<td>57 kg/m (115 lb/yd)</td>
<td>68 kg/m (136 lb/yd)</td>
</tr>
<tr>
<td>Weight of track structure (q)</td>
<td>315 kg/m</td>
<td>680 kg/m</td>
</tr>
<tr>
<td>Cross-sectional area of two rails (A)</td>
<td>0.0145 m²</td>
<td>0.0172 m²</td>
</tr>
<tr>
<td>Moment of inertia of two rails (I)</td>
<td>5.47 x 10⁻⁵ m⁴</td>
<td>8.0 x 10⁻⁵ m⁴</td>
</tr>
<tr>
<td>Axial resistance of the foundation (kₚ) (estimate)</td>
<td>5 x 10⁴ kg/m/m</td>
<td>5 x 10⁴ kg/m/m</td>
</tr>
<tr>
<td>Modulus of elasticity (E) of rails</td>
<td>2.1 x 10¹⁰ kg/m²</td>
<td>2.1 x 10¹⁰ kg/m²</td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>1.0 x 10⁻⁶</td>
<td>1.0 x 10⁻⁶</td>
</tr>
</tbody>
</table>

To demonstrate the basic features of the solution, the results for an example problem are shown in Figures 3, 4, 5 and 6. For this particular example the imperfection span, 2ℓ, is chosen to be 100 meters, while the imperfection amplitude f is varied from 0.0 to 1.0 meter.

Figure 3 shows the equilibrium branches for different values of f. For each value of f, the response consists of two branches. The first branch is vertical and corresponds to the pre-buckling state. The second branch bifurcates from the vertical one and shows a minimum below which the only state of equilibrium is the undeformed state. It may be shown, using the Lagrange stability criteria, that the vertical branch is stable while the second branch is unstable between the bifurcation point and the point of minimum and is stable elsewhere [4]. The temperature increase corresponding to the point of minimum is referred to as the "safe" temperature increase.

*Weight is estimated for a track with the following characteristics: 3250 ties, 6500 tieplates, 13,000 spikes, 4500 anchors/mile [9].
†Except for f = 0.0.
CASE (A)

\[ K_h = 0.5 \times 10^5 \text{ kg/m/m} \]
\[ q = 315 \text{ kg/m, } \ell = 50 \text{ m} \]

57 kg/m rails (115 lb/y)

**FIGURE 3.** TEMPERATURE INCREASE VS. MAXIMUM DEFLECTION FOR CASE (A) (LIGHT TRACK)
FIGURE 4. AXIAL LOAD IN BUCKLED REGION VS. MAXIMUM DEFLECTION FOR CASE (A) (LIGHT TRACK)

CASE (A)

$K_h = 0.5 \times 10^5$

$q = 315 \text{ kg/m}, \ell = 50 \text{ m}$

58 kg/m rails
CASE (A)

\[ K_h = 0.5 \times 10^5 \text{ kg/m/m} \]

\[ q = 680 \text{ kg/m, } \zeta = 50 \]

68 kg/m rails (137 lb/y)

FIGURE 5. TEMPERATURE INCREASE VS. MAXIMUM DEFLECTION FOR CASE (A) (HEAVY TRACK)
CASE (A)

\[ K_h = 0.5 \times 10^6 \text{ kg/m/m} \]
\[ q = 680 \text{ kg/m} \]
\[ 68 \text{ kg/m rails} \]

FIGURE 6: AXIAL LOAD IN BUCKLED REGION VS. MAXIMUM DEFLECTION FOR CASE (A) (HEAVY TRACK)
Increasing the amplitude of imperfection from 0.0 to 1.0 reduces slightly the critical temperature from 45° to 37°C, while the drop in the bifurcation temperature is extremely sharp. It drops from \( \infty \) for \( f = 0 \) to 54°C for \( f = 1.0 \).

In Figure 4, the relation between the axial load and the maximum displacement is shown. The bifurcation loads are related to the bifurcation temperatures in Figure 3, through the relation

\[
N_b = EAuT_b \tag{46}
\]

where the subscript \( b \) denotes the bifurcation point.

It is thus obvious that increasing the imperfection amplitude will sharply reduce the bifurcation loads. For small values of the imperfection, the bifurcation loads may be higher than the yield loads for the rails; however, buckling may still occur at temperatures much lower than the bifurcation temperatures by giving the track a disturbance large enough to put it on the unstable part of the equilibrium branch. These disturbances may be encountered during the maintenance process or due to waves produced by the moving trains.

A similar set of graphs, figures 5 and 6, are presented for the case of the track with concrete ties. The critical temperature increase is higher than those of the track with wood ties. It may be as high as 62°C for the straight track and 53°C for an imperfection of 1.0 meter. The bifurcation temperatures are also much higher in this case, so are the corresponding bifurcation loads.

It thus may be that for the case of a heavy track with concrete ties, the chance of buckling is much lower than in the case of a light track.

* For a rail of yield stress 4,900 kg/cm² (70,000 psi), the necessary increase in temperature to cause yielding is 223°C, and the corresponding axial load (in two 57 kg/m rails) is 71 x 10⁴ kg.
2.3 CASE (B): THE IMPERFECTION REGION IS SMALLER THAN THE LIFT-OFF REGION

In this case, the geometric imperfection is assumed to be in the same form as in Case (A); but on a small span such that the span of lift-off is larger than the span of imperfection; i.e.,

\[ w_0(x) = \begin{cases} -\frac{t}{2} [1 + \cos \frac{\pi x}{L}] & \text{if } -L \leq x \leq L; \quad L < a \\ 0 & \text{elsewhere} \end{cases} \]

\[ u_0(x) = 0 \quad \text{if } -\infty \leq x \leq \infty \]

The deformed equilibrium configuration is shown in Figure 7.

The procedure of the derivation of the D. E.'s and B. C.'s is the same as for Case (A). The D. E.'s will take the following form:

\[ EI\ddot{w}_1,xxxx = [EA(\dot{\varepsilon}_{1xx} - \alpha T)(\ddot{w}_1 + w_0)]_x = q \]
\[ 0 \leq x \leq L, \quad 48.a \]

\[ -[EA(\dot{\varepsilon}_{1xx} - \alpha T)]_x = 0 \]
\[ 48.b \]

\[ EI\ddot{w}_2,xxxx = [EA(\dot{\varepsilon}_{1xx} - \alpha T)w_2]_x = q \]
\[ \ell \leq x \leq a, \quad 48.c \]

\[ -[EA(\dot{\varepsilon}_{2xx} - \alpha T)]_x = 0 \]
\[ 48.d \]

and

\[ EI\ddot{w}_3,xxxx = [EA(\dot{\varepsilon}_{3xx} - \alpha T)\ddot{w}_3]_x = (q - \lambda_1) \]
\[ a \leq x \leq \infty, \quad 48.e \]

\[ -[EA(\dot{\varepsilon}_{3xx} - \alpha T)]_x + k_n \hat{u}_3 = 0 \]
\[ 48.f \]

\[ \hat{w}_3(x) \equiv \ddot{w}_3(x) \equiv \dddot{w}_3,xx(x) \equiv \cdots \equiv 0 \]
\[ 48.g \]
CASE (B)

DEFORMED STATE

UNDEFORMED STATE (STRESSLESS)

\((\hat{u}_1, \hat{w}_1)\)

\((\hat{u}_2, \hat{w}_2)\)

\((\hat{u}_3, \hat{w}_3)\)

\(a + \hat{u}_i(a)\)

\(q\)

\(K_h\)

FIGURE 7. MATHEMATICAL MODEL FOR CASE (B)
The boundary and transversality conditions reduce to:

at $x = 0$:

\begin{align*}
\hat{u}_1(0) &= 0 \quad &\text{a)} \\
\hat{w}_{1,x}(0) &= 0 \quad &\text{b)} \\
\hat{w}_{1,xxx}(0) &= 0 \quad &\text{c)} \\
\hat{u}_2(\ell) &= \hat{u}_{2,x}(\ell) \quad &\text{d)} \\
\hat{w}_{2,x}(\ell) &= \hat{w}_{2,xx}(\ell) \quad &\text{e)} \\
\hat{w}_{2,xxx}(\ell) &= \hat{w}_{2,xxxx}(\ell) \quad &\text{f)} \\
\hat{w}_{2,xxxx}(\ell) &= \hat{w}_{2,xxxxx}(\ell) \quad &\text{g)}
\end{align*}

at $x = \ell$:

\begin{align*}
\hat{u}_1(\ell) &= \hat{u}_{2,xx}(\ell) \quad &\text{h)} \\
\hat{w}_{1,x}(\ell) &= \hat{w}_{2,xx}(\ell) \quad &\text{i)} \\
\hat{w}_{1,xxx}(\ell) &= \hat{w}_{2,xxxx}(\ell) \quad &\text{j)} \\
\hat{w}_{1,xxxx}(\ell) &= \hat{w}_{2,xxxxx}(\ell) \quad &\text{k)}
\end{align*}

at $x = a$:

\begin{align*}
\hat{u}_2(a) &= \hat{u}_3(a) \quad &\text{l)} \\
\hat{w}_{2,x}(a) &= \hat{w}_{3,x}(a) \quad &\text{m)} \\
\hat{w}_{2,xx}(a) &= \hat{w}_{3,xx}(a) \quad &\text{n)} \\
\hat{w}_{2,xxx}(a) &= \hat{w}_{3,xxx}(a) \quad &\text{o)}
\end{align*}

\[ E\hat{w}_{2,xx}(a) = E\hat{w}_{3,xx}(a) - \lambda_3 \]
\[ -E\hat{w}_{2,xxx}(a) = -E\hat{w}_{3,xxx}(a) - \lambda_2 \]

T. C.:

\[ \hat{w}_{2,xx}(a) = 0 \quad &\text{p)} \]

at $x = \infty$:

\[ \hat{u}_3(\infty) = 0 \quad &\text{q)} \]
\[ \hat{w}_3(\infty) = 0 \quad &\text{r)} \]
\[ \hat{w}_{3,x}(\infty) = 0 \quad &\text{s)} \]

2.4 ANALYTICAL SOLUTION OF CASE (B)

Integrating D. E. (48,b) once, it follows that

\[ -E\hat{a}(\hat{u}_{1,xx} - aT) = \text{const.} = N \]

\[ \hat{u}_{1,xx} - aT \]

\[ \hat{u}_1(0) = 0 \]

\[ \hat{w}_{1,x}(0) = 0 \]

\[ \hat{w}_{1,xxx}(0) = 0 \]

\[ \hat{u}_2(\ell) = \hat{u}_{2,x}(\ell) \]

\[ \hat{w}_{2,x}(\ell) = \hat{w}_{2,xx}(\ell) \]

\[ \hat{w}_{2,xxx}(\ell) = \hat{w}_{2,xxxx}(\ell) \]

\[ \hat{w}_{2,xxxx}(\ell) = \hat{w}_{2,xxxxx}(\ell) \]

\[ \hat{u}_3(a) = \hat{u}_3(a) \]

\[ \hat{w}_{3,x}(a) = \hat{w}_{3,xx}(a) \]

\[ \hat{w}_{3,xx}(a) = \hat{w}_{3,xxx}(a) \]

\[ \hat{w}_{3,xxx}(a) = \hat{w}_{3,xxxx}(a) \]

\[ \hat{w}_{3,xxxx}(a) = \hat{w}_{3,xxxxx}(a) \]

\[ E\hat{w}_{3,xx}(a) = E\hat{w}_{3,xx}(a) - \lambda_3 \]

\[ -E\hat{w}_{3,xxx}(a) = -E\hat{w}_{3,xxx}(a) - \lambda_2 \]

\[ \hat{w}_{3,xxxx}(a) = \hat{w}_{3,xxxxx}(a) \]

\[ \hat{w}_{3,xxxxx}(a) = \hat{w}_{3,xxxxx}(a) \]

\[ \hat{u}_3(\infty) = 0 \]

\[ \hat{w}_3(\infty) = 0 \]

\[ \hat{w}_{3,x}(\infty) = 0 \]

\[ \hat{u}_3(0) = 0 \]

\[ \hat{w}_{3,xx}(0) = 0 \]

\[ \hat{w}_{3,xxx}(0) = 0 \]

\[ \hat{w}_{3,xxxx}(0) = 0 \]

\[ \hat{w}_{3,xxxxx}(0) = 0 \]
Substitution of (50) into (48.a), it becomes

\[ \hat{w}_{1,xxxx} + 2 \kappa^2 \hat{w}_{1,xx} = q^* - \kappa^2 w_{0,xx} \quad . \]

The general solution of D. E. (51), making use of symmetry around the origin, is

\[ \hat{w}_1(x) = A_1 + A_3 \cos \kappa x + R_1 x^2 - R_2 \cos \frac{\pi x}{L}; \quad 0 \leq x \leq L, \]

where

\[ R_1 = \frac{q^*}{2\kappa^2}; \quad R_2 = \frac{f \kappa^2}{2[(\frac{\pi}{L})^2 - \kappa^2]} \quad . \]

Integrating D. E. (48.d) once, it follows that

\[-EA(\hat{e}_{2xx} - \alpha T) = \text{const.} = N^* \quad . \]

Utilizing B. C. (49),(e), it follows that

\[ N^* = N \quad . \]

Making use of (54) and (55), D. E. (48.c) reduces to

\[ \hat{w}_{2,xxxx} + \kappa^2 \hat{w}_{2,xx} = q^* \quad . \]

The general solution of (56) is

\[ \hat{w}_2(x) = C_1 + C_2 x + C_3 \cos \kappa x + C_4 \sin \kappa x + R_1 x^2; \quad L \leq x \leq a \quad . \]

The constants in \( \hat{w}_1(x) \) and \( \hat{w}_2(x) \), \( A_1, A_3, C_1, C_2, C_3 \) and \( C_4 \), can be determined by substituting equations (52) and (57) into B. C.'s (49(f), (g), (h), (i), (\ell), (m)). The result may be written in the following form:
\[
\begin{pmatrix}
1 & \cos k\ell & -1 & -\ell & -\cos k\ell & -\sin k\ell \\
0 & -k\sin k\ell & 0 & -1 & k\sin k\ell & -k\cos k\ell \\
0 & -k^2 \cos k\ell & 0 & 0 & k^2 \cos k\ell & k^2 \sin k\ell \\
0 & k^3 \sin k\ell & 0 & 0 & -k^3 \sin k\ell & k^3 \cos k\ell \\
0 & 0 & 1 & a & \cos ka & \sin ka \\
0 & 0 & 0 & 1 & -k\sin ka & k\cos ka \\
\end{pmatrix}
\begin{pmatrix}
A_1 \\
A_3 \\
C_1 \\
C_2 \\
C_3 \\
C_4 \\
\end{pmatrix}
= 
\begin{pmatrix}
-R_2 \\
0 \\
(\frac{\pi}{\ell})^2 R_2 \\
0 \\
-R_1 a^2 \\
-R_1 a \\
\end{pmatrix}
\tag{58}
\]

However, to solve for the unknown constants in equation (58), the value of \(a\) should be known for a given value of \(k\). This requires the use of one more B.C. ; namely, T.C. (49) (p).

Substitution of (57) into (49) (p) gives

\[
C_3 k^2 \cos ka + C_4 k^2 \sin ka - q^* / k^2 = 0 \tag{59}
\]

Since the solution for \(a\) depends on \(C_3\) and \(C_4\), the process of determining the constants reduces to the solution of a set of non-linear algebraic equations. The solution may be obtained through an iterative scheme. Evaluating the constants for a given value of \(a\) and \(k\) will define completely \(\hat{w}_1 (x)\) and \(\hat{w}_2 (x)\). Now one may proceed to evaluate the corresponding increase in temperature as follows:

Equation (50) may be rewritten as follows:

\[
\hat{u}_{1,x} = \left( \frac{-N}{EA} + aT \right) - \left( \frac{1}{2} \hat{w}_{1,x}^2 + \hat{w}_{1,x} \hat{w}_{1,xx} \right) \tag{60}
\]

Integrating once, noting B.C. (49) (a), it follows that

\[
\hat{u}_1 (L) = \left( \frac{-N}{EA} + aT \right) L - \int_0^L \left( \frac{1}{2} \hat{w}_{1,x}^2 + \hat{w}_{1,x} \hat{w}_{1,xx} \right) dx \tag{61}
\]
Similarly, (48)(d) gives

\[ \hat{u}_{2,x} = \left( -\frac{N}{EA} + \alpha T \right) - \frac{1}{2} \hat{w}_{2,x}^2 \quad . \quad (62) \]

Integrating once, (62) becomes

\[ \hat{u}_{2}(a) = \hat{u}_{2}(\ell) + \left( -\frac{N}{EA} + \alpha T \right)(a - \ell) - \int_{\ell}^{a} \frac{1}{2} \hat{w}_{2,x}^2 \, dx \quad . \quad (63) \]

Noting B. C. (49)(d), (63) becomes

\[ \hat{u}_{2}(a) = \left( -\frac{N}{EA} + \alpha T \right)a - \int_{0}^{\ell} \left( \frac{1}{2} \hat{w}_{1,x}^2 + \hat{w}_{0,x} \hat{w}_{1,x} \right) \, dx - \int_{\ell}^{a} \frac{1}{2} \hat{w}_{2,x}^2 \, dx \quad . \quad (64) \]

The general solution of D. E. (48)(f), noting (48)(g), is

\[ \hat{u}_{3}(x) = D_{1} e^{-\beta x} + D_{2} e^{+\beta x} \quad , \quad (65) \]

where \( \beta \) is defined in (39).

Using B. C. (49)(q), (65) becomes

\[ \hat{u}_{3}(x) = D_{1} e^{-\beta x} \quad . \quad (66) \]

Substitution of (66) into B. C. (49)(k), it follows that

\[ D_{1} = \frac{e^{+\beta a}}{\beta} \left( -\frac{N}{EA} + \alpha T \right) \quad , \quad (67) \]

and (66) becomes
\[ \hat{u}_3(x) = \frac{-e^{-\beta(x-a)}}{\beta} \left( \frac{-N}{EA} + aT \right). \]  

Using B. C. (49)(j), it follows that

\[ T = \left( \frac{N}{EA} + \int_0^\ell \left( \frac{\frac{1}{2} \hat{w}_{1,x}^2 + \hat{w}_{2,x} \hat{w}_{1,x}}{a + \frac{1}{\beta}} \right) dx + \int_0^a \frac{\frac{1}{2} \hat{w}_{2,x}^2}{a} dx \right) / a, \]

which is the increase in temperature corresponding to the obtained equilibrium configuration of \( \hat{w}_1(x) \) and \( \hat{w}_2(x) \).

The numerical results of an example problem are presented in Figures 8 and 9 for the same track parameters of Case (A). The span of imperfection, \( 2\ell \), is taken to be 1.0 meter, while the imperfection amplitude, \( f \), varies from 0.0 to 0.1 meter.

In Figure 8, the relation between the increase in temperature and the corresponding maximum deflection is presented. The bifurcation temperatures, although sharply reduced by increasing the imperfection amplitude, are still higher than those in Case (A) (for the same \( f/\ell \) ratio); e.g., an \( f/\ell \) ratio of 1/50 corresponds to a bifurcation temperature of 53°C in Case (A), Figure 3, while the corresponding value in Case (B) is 360°C, Figure 8. This observation is found to be valid for different imperfection spans.

In this example problem the safe-temperature increase as well as the post-buckling response on the stable parts of the equilibrium branches is slightly affected by increasing the imperfection amplitude. The relation between the axial load in the lift-off region and the maximum deflection is shown in Figure 9. It should be noted that the bifurcation loads, although dropping at the same rate as the bifurcation temperatures, exceed the yield loads for the rails. However, buckling may still occur at lower temperatures by giving the track enough energy to reach the unstable part of the equilibrium branch.
FIGURE 8. TEMPERATURE INCREASE VS. MAXIMUM DEFLECTION FOR CASE (B) (LIGHT TRACK)
CASE (B)

\[ K_h = 0.5 \times 10^6 \text{ kg/m/m} \]
\[ q = 315 \text{ kg/m, } \epsilon = 0.5 \text{m} \]
58 kg/m rails

FIGURE 9. AXIAL LOAD IN BUCKLED REGION VS. MAXIMUM DEFLECTION FOR CASE (B) (LIGHT TRACK)
3. DISCUSSION OF RESULTS

In the preceding sections the example problems were solved for particular values of the imperfection span, $2\varphi$, to show the effect of varying the imperfection amplitude on the bifurcation temperature as well as on the safe temperature increase.

Since the imperfection spans encountered in the field may vary from very short spans in the case of localized imperfection to very long spans in cases of slopes or shallow hills, it is important to examine the effect of varying the imperfection span on the safe temperature increase. Figure 10, shows the relation between the safe temperature increase, which is denoted by $T_s$, and the imperfection half span $\varphi$ for positive imperfections.

The matching of the two solutions in Cases (A) and (B) occurs when the lift-off span coincides with the imperfection span. Noting that the formulation of the problem is in the Lagrange coordinate system, matching occurs when

$$\varphi = \bar{a}$$

where $\bar{a}$ is the Euler coordinate of the separation point

and

$$\bar{a} = a + u_1(a)$$

However, for all practical purposes $\bar{a} \approx a$.

In Figure 10, it should be noted that compared to the straight state, positive imperfections give lower values for the safe temperature increase except on relatively short spans.

This finding may seem rather unusual, based on physical intuition, however, the fact that $T_s$ is not a bifurcation temperature but rather a point of minima on a non-linear response curve may justify this behavior.

A similar set of graphs can be obtained for the concrete tie track, simply by using the corresponding track parameters in the analyses. The results will be similar except for a higher safe temperature increase.
FIGURE 10. SAFE TEMPERATURE INCREASE VS. HALF-SPAN OF IMPERFECTION FOR A LIGHT TRACK

$q = 315 \text{ kg/m}$

$K_h = 0.5 \times 10^5 \text{ kg/m/m}$
4. CONCLUSIONS AND RECOMMENDATIONS

The analysis of the problem of vertical buckling of tracks with geometric imperfections shows that:

1) A perfectly straight track does not exhibit bifurcation points from the undeformed branch, while the imperfect track does.

2) Increasing the imperfection amplitudes reduces the bifurcation loads significantly. This is of some importance because if the imperfection is large enough, the bifurcation temperature may be as low as the safe temperature increase, and a very small disturbance may cause the track to buckle.

3) For the same f/λ ratio, the bifurcation temperature and the corresponding axial load are much higher in Case (B) than in Case (A).

4) By increasing the imperfection span, the safe temperature increase approaches that of a perfectly straight track.

5) The bifurcation temperature as well as the safe temperature increase are both increased by increasing the weight of the tracks.

6) The fact that the bifurcation loads may be higher than the yield loads of the rails does not mean that failure will occur only by yielding.
   If at lower temperature, that are higher than the safe temperature, the track is given enough energy to reach the state of unstable equilibrium it will snap through to the state of stable equilibrium. Such energy may be given either by the waves caused by the moving trains or by lifting the track during any maintenance process.

Since small vertical imperfections (which always exist in an actual track) strongly reduce the buckling temperature, it follows that the weight of the unit track and its flexural rigidity in the vertical plane (quantities which do not change significantly with time) are the dominant factors for vertical buckling.
5. REFERENCES


APPENDIX

REPORT OF INVENTIONS

After a diligent review of the work performed under this contract, no innovation, discovery, or invention was made. The work involved developing and improving the predictive capability of vertical track buckling analyses.